Shortest subarray with sum at least k

Time: O(N); Space: O(N); hard

Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K.

If there is no non-empty subarray with sum at least K, return -1.

Example 1:

Input: A = [1], K = 1

Output: 1

Example 2:

Input: A = [1,2], K = 4

Output: -1

Example 2:

Input: A = [2,-1,2], K = 3

Output: 3

Constraints:

  • 1 <= len(A) <= 50000

  • -10 ^ 5 <= A[i] <= 10 ^ 5

  • 1 <= K <= 10 ^ 9

[1]:
import collections
class Solution1(object):
    """
    Time: O(N)
    Space: O(N)
    """
    def shortestSubarray(self, A, K):
        """
        :type A: List[int]
        :type K: int
        :rtype: int
        """
        accumulated_sum = [0]*(len(A)+1)
        for i in range(len(A)):
            accumulated_sum[i+1] = accumulated_sum[i]+A[i]

        result = float("inf")
        mono_increasing_q = collections.deque()

        for i, curr in enumerate(accumulated_sum):
            while mono_increasing_q and curr <= accumulated_sum[mono_increasing_q[-1]]:
                mono_increasing_q.pop()
            while mono_increasing_q and \
                  curr-accumulated_sum[mono_increasing_q[0]] >= K:
                result = min(result, i-mono_increasing_q.popleft())
            mono_increasing_q.append(i)

        return result if result != float("inf") else -1
[2]:
s = Solution1()
A = [1]
K = 1
assert s.shortestSubarray(A, K) == 1
A = [1,2]
K = 4
assert s.shortestSubarray(A, K) == -1
A = [2,-1,2]
K = 3
assert s.shortestSubarray(A, K) == 3